Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems?

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2017

How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems?

0 Datasets

0 Files

en
2017
Vol 62 (5)
Vol. 62
DOI: 10.1111/fwb.12909

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mary E Power
Mary E Power

University of California, Berkeley

Verified
Michael T. Brett
Stuart E. Bunn
Sudeep Chandra
+11 more

Abstract

Abstract Many freshwater systems receive substantial inputs of terrestrial organic matter. Terrestrially derived dissolved organic carbon (t‐DOC) inputs can modify light availability, the spatial distribution of primary production, heat, and oxygen in aquatic systems, as well as inorganic nutrient bioavailability. It is also well‐established that some terrestrial inputs (such as invertebrates and fruits) provide high‐quality food resources for consumers in some systems. In small to moderate‐sized streams, leaf litter inputs average approximately three times greater than the autochthonous production. Conversely, in oligo/mesotrophic lakes algal production is typically five times greater than the available flux of allochthonous basal resources. Terrestrial particulate organic carbon (t‐POC) inputs to lakes and rivers are comprised of 80%–90% biochemically recalcitrant lignocellulose, which is highly resistant to enzymatic breakdown by animal consumers. Further, t‐POC and heterotrophic bacteria lack essential biochemical compounds that are critical for rapid growth and reproduction in aquatic invertebrates and fishes. Several studies have directly shown that these resources have very low food quality for herbivorous zooplankton and benthic invertebrates. Much of the nitrogen assimilated by stream consumers is probably of algal origin, even in systems where there appears to be a significant terrestrial carbon contribution. Amino acid stable isotope analyses for large river food webs indicate that most upper trophic level essential amino acids are derived from algae. Similarly, profiles of essential fatty acids in consumers show a strong dependence on the algal food resources. Primary production to respiration ratios are not a meaningful index to assess consumer allochthony because respiration represents an oxidised carbon flux that cannot be utilised by animal consumers. Rather, the relative importance of allochthonous subsidies for upper trophic level production should be addressed by considering the rates at which terrestrial and autochthonous resources are consumed and the growth efficiency supported by this food. Ultimately, the biochemical composition of a particular basal resource, and not just its quantity or origin, determines how readily this material is incorporated into upper trophic level consumers. Because of its highly favourable biochemical composition and greater availability, we conclude that microalgal production supports most animal production in freshwater ecosystems.

How to cite this publication

Michael T. Brett, Stuart E. Bunn, Sudeep Chandra, Aaron W. E. Galloway, Fen Guo, Martin J. Kainz, Paula Kankaala, Danny C. P. Lau, Timothy P. Moulton, Mary E Power, Joseph B. Rasmussen, Sami J. Taipale, James H. Thorp, John D. Wehr (2017). How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems?. , 62(5), DOI: https://doi.org/10.1111/fwb.12909.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

14

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1111/fwb.12909

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access