0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessStructural transformation of gold nanorods are investigated by high-resolution transmission electron microscopy after they have been exposed to low-energy femtosecond and nanosecond laser pulses in colloidal solution. The pulse energies were below the gold nanorod melting threshold, but allowed early stage shape transformation processes. It is found that while the as-prepared nanorods are defect-free, laser-irradiation induces point and line defects. The defects are dominated by (multiple) twins and stacking faults (planar defects), which are the precursor that drives the nanorods to convert their {110} facets into the more stable {100} and {111} facets and hence minimize their surface energy. These observations suggest that short-laser pulsed photothermal melting begins with the creation of defects inside the nanorods followed by surface reconstruction and diffusion, in contrast with the thermal melting of the rods or the bulk material, where the melting starts at the surface.
Stephan Link, Zhong Lin Wang, Mostafa A. El-Sayed (2000). How Does a Gold Nanorod Melt?. , 104(33), DOI: https://doi.org/10.1021/jp0011701.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2000
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/jp0011701
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access