0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA model catalytic system of a monolayer consisting of 9-nm average size, cubic, single-crystal Pt nanoparticles and poly(vinylpyrrolidone) (PVP) polymer capping agent deposited on a sapphire prism was investigated by sum-frequency generation (SFG) vibrational spectroscopy in total internal reflection (TIR) geometry. Exposure of a clean nanoparticle monolayer after removal of PVP by cyclic oxidation–reduction treatment to high-pressure ethylene at room temperature led to the formation of ethylidyne and di-σ bonded ethylene. Low-pressure ethylene adsorption on a pseudohexagonal reconstructed Pt(100) single crystal resulted only in the formation of di-σ bonded ethylene. High-pressure adsorption of ethylene on Pt nanoparticle monolayers and Pt(100) led to the formation of both ethylidyne and di-σ bonded ethylene and stabilized the pseudohexagonal reconstruction of Pt(100) on both the single crystal and the surface of clean cubic nanoparticles. Restructuring of the PVP layer caused by CO adsorption indicated a small fraction of the Pt surface was available for adsorption. The stretching frequency of linear-bound CO red-shifted relative to CO adsorption on a clean Pt nanoparticle monolayer. PVP reversibly restructured upon the removal of CO by oxidation at room temperature. After the near complete removal of PVP by a cyclic low-temperature oxidation–reduction process, the peak position of the linear-bound CO blue-shifted to a frequency consistent with the adsorption of CO on a clean Pt surface. The successful application of TIR-SFG to catalytically relevant surfaces under high-pressure conditions demonstrated in this study is a significant advance in the detection of surface intermediates.
S. J. Kweskin, Robert M. Rioux, Hyunjoon Song, K. Komvopoulos, Peidong Yang, Gabor Somorjai (2012). High-Pressure Adsorption of Ethylene on Cubic Pt Nanoparticles and Pt(100) Single Crystals Probed by in Situ Sum Frequency Generation Vibrational Spectroscopy. , 2(11), DOI: https://doi.org/10.1021/cs3005067.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/cs3005067
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access