Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2015

High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites

0 Datasets

0 Files

en
2015
Vol 16 (1)
Vol. 16
DOI: 10.1021/acs.nanolett.5b04884

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Eli Yablonovitch
Eli Yablonovitch

University of California, Berkeley

Verified
Carolin M. Sutter‐Fella
Yanbo Li
Matin Amani
+5 more

Abstract

Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.

How to cite this publication

Carolin M. Sutter‐Fella, Yanbo Li, Matin Amani, Joel W. Ager, Francesca M. Toma, Eli Yablonovitch, Ian D. Sharp, Ali Javey (2015). High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites. , 16(1), DOI: https://doi.org/10.1021/acs.nanolett.5b04884.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2015

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acs.nanolett.5b04884

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access