Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. High crystalline epitaxial thin films of NiO by plasma-enhanced ALD and their properties

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

High crystalline epitaxial thin films of NiO by plasma-enhanced ALD and their properties

0 Datasets

0 Files

English
2023
APL Materials
Vol 11 (9)
DOI: 10.1063/5.0157628

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Cnr Rao
Cnr Rao

Jawaharlal Nehru Centre for Advanced Scientific Research

Verified
Rohit Attri
Debendra Prasad Panda
J. Ghatak
+1 more

Abstract

NiO is an interesting transition metal oxide due to its fascinating properties. High crystalline thin films of NiO are preferred for use in a variety of device applications but are challenging to deposit at low temperatures. We have prepared epitaxial thin films of NiO with [111] as the preferred growth direction on a c-plane sapphire substrate at relatively low temperatures using plasma-enhanced atomic layer deposition (PEALD) exploiting a simple nickel precursor with oxygen plasma. The evolution of crystallinity and surface morphology of the films were studied as a function of substrate temperature. Ultra-smooth NiO films with excellent crystallinity were prepared at 250 °C without the necessity for post-annealing. Different microscopic and spectroscopic methods revealed film characteristics. The magnetic properties of (111) oriented epitaxial NiO films prepared using PEALD are explored for the first time, and they are antiferromagnetic in nature.

How to cite this publication

Rohit Attri, Debendra Prasad Panda, J. Ghatak, Cnr Rao (2023). High crystalline epitaxial thin films of NiO by plasma-enhanced ALD and their properties. APL Materials, 11(9), DOI: 10.1063/5.0157628.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

APL Materials

DOI

10.1063/5.0157628

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access