Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger

0 Datasets

0 Files

English
2019
International Journal of Heat and Mass Transfer
Vol 135
DOI: 10.1016/j.ijheatmasstransfer.2019.02.003

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohsen Sheikholeslami
Mohsen Sheikholeslami

Babol Noshirvani University

Verified
Mohsen Sheikholeslami
Rizwan Ul Haq
Ahmad Shafee
+3 more

Abstract

The current article investigates the impact of using fins and nano sized materials on performance of discharging system. Various shapes for nanoparticle have been considered. Cold fluid flows in both inner and outer layers and middle layer is full of PCM. To make a careful choice of designing heat storage based on uniform solidification, two factor has been examined; length of fins and shape factor. Temperature and solid fraction distributions were reported at various time steps. The homogeneous model for nanofluid has been extended by incorporating various shapes of CuO nanoparticles. The mathematical model has been offered in the form of PDE's, which were solved using Galerkin FEM. It can be observed that the employing nanofluid augments the discharging rate and best performance is obtained for platelet shape.

How to cite this publication

Mohsen Sheikholeslami, Rizwan Ul Haq, Ahmad Shafee, Zhixiong Li, Yassir G. Elaraki, Iskander Tlili (2019). Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. International Journal of Heat and Mass Transfer, 135, pp. 470-478, DOI: 10.1016/j.ijheatmasstransfer.2019.02.003.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

International Journal of Heat and Mass Transfer

DOI

10.1016/j.ijheatmasstransfer.2019.02.003

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access