Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Health monitoring of wind turbine: data-based approaches

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Chapter in a book
English
2018

Health monitoring of wind turbine: data-based approaches

0 Datasets

0 Files

English
2018
Institution of Engineering and Technology eBooks
DOI: 10.1049/pbpo117e_ch7

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Hamid Reza Karimi
Hamid Reza Karimi

Politecnico di Milano

Verified
Guang Wang
Shen Yin
Hamid Reza Karimi

Abstract

This chapter presented a robust data-driven fault detection scheme with the application to a wind turbine benchmark. The proposed scheme is based on robust residual generators constructed directly from available process measurements. For this purpose, a parity space is first identified from the measured data, and optimal parity vectors are selected from the parity space according to a given performance index and an optimization criterion to generate a robust residual vector. A proper evaluation approach as well as a suitable decision logic is further given to make a correct final decision. The effectiveness of the proposed scheme is finally demonstrated by the results obtained from the simulation of a wind turbine benchmark model.

How to cite this publication

Guang Wang, Shen Yin, Hamid Reza Karimi (2018). Health monitoring of wind turbine: data-based approachesHealth monitoring of wind turbine: data-based approaches. Institution of Engineering and Technology eBooks, pp. 169-191, DOI: 10.1049/pbpo117e_ch7,

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Chapter in a book

Year

2018

Authors

3

Datasets

0

Total Files

0

Language

English

DOI

10.1049/pbpo117e_ch7

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access