0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe pressing need to mitigate climate change has led to the widespread adoption of photovoltaic (PV) solar panels as a renewable energy solution. However, the increasing disposal of end-of-life solar panels presents significant environmental challenges, as they contain valuable elements that can potentially be recycled and reused. This article reviews a novel approach to waste valorization and recycling within the circular economy framework by harnessing valuable elements from retired solar panels as alternative construction materials, thereby contributing to building climate resilience. Through case studies in China, Japan, Brazil, US, Germany, and Brazil, this study explores the feasibility and benefits of repurposing elements such as silicon, glass, and metals from decommissioned solar panels for construction applications. Key findings indicate that significant quantities of these materials can be recovered through efficient recycling processes, offering a sustainable solution to reduce waste and promote resource efficiency. Numerical assessments reveal that up to 90 % of silicon and 95 % of glass from end-of-life solar panels can be effectively recycled, thereby minimizing the environmental footprint associated with their disposal. Moreover, this approach not only diverts waste from landfills but also reduces the demand for virgin materials, thus conserving natural resources and lowering carbon emissions. The incorporation of recycled materials into construction projects enhances the circularity of the economy by closing material loops and promoting a regenerative approach to resource management. Furthermore, the utilization of recycled materials in construction enhances the resilience of built environments to climate change impacts by reducing energy consumption, mitigating greenhouse gas (GHG) emissions, and enhancing structural durability. Overall, this article underscores the potential of waste valorization and recycling from solar panels to contribute to a sustainable and resilient built environment, aligning with broader efforts to address climate change and advance circular economy in waste sector.
Kai Chen Goh, Tonni Agustiono Kurniawan, Hui Hwang Goh, Dongdong Zhang, Meihui Jiang, Wei Dai, Muhammad Imran Khan, Mohd Hafiz Dzarfan Othman, Faissal Aziz, Abdelkader Anouzla, Christia Meidiana (2024). Harvesting valuable elements from solar panels as alternative construction materials: A new approach of waste valorization and recycling in circular economy for building climate resilience. Sustainable materials and technologies, 41, pp. e01030-e01030, DOI: 10.1016/j.susmat.2024.e01030.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
Sustainable materials and technologies
DOI
10.1016/j.susmat.2024.e01030
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access