Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2015

Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why

0 Datasets

0 Files

English
2015
Journal of Ecology
Vol 103 (4)
DOI: 10.1111/1365-2745.12401

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Christopher D Philipson
Christopher D Philipson

University Of Dundee

Verified
C. E. Timothy Paine
Lucy Amissah
Harald Auge
+32 more

Abstract

Summary Plant functional traits, in particular specific leaf area ( SLA ), wood density and seed mass, are often good predictors of individual tree growth rates within communities. Individuals and species with high SLA , low wood density and small seeds tend to have faster growth rates. If community‐level relationships between traits and growth have general predictive value, then similar relationships should also be observed in analyses that integrate across taxa, biogeographic regions and environments. Such global consistency would imply that traits could serve as valuable proxies for the complex suite of factors that determine growth rate, and, therefore, could underpin a new generation of robust dynamic vegetation models. Alternatively, growth rates may depend more strongly on the local environment or growth–trait relationships may vary along environmental gradients. We tested these alternative hypotheses using data on 27 352 juvenile trees, representing 278 species from 27 sites on all forested continents, and extensive functional trait data, 38% of which were obtained at the same sites at which growth was assessed. Data on potential evapotranspiration ( PET ), which summarizes the joint ecological effects of temperature and precipitation, were obtained from a global data base. We estimated size‐standardized relative height growth rates ( SGR ) for all species, then related them to functional traits and PET using mixed‐effect models for the fastest growing species and for all species together. Both the mean and 95th percentile SGR were more strongly associated with functional traits than with PET . PET was unrelated to SGR at the global scale. SGR increased with increasing SLA and decreased with increasing wood density and seed mass, but these traits explained only 3.1% of the variation in SGR . SGR –trait relationships were consistently weak across families and biogeographic zones, and over a range of tree statures. Thus, the most widely studied functional traits in plant ecology were poor predictors of tree growth over large scales. Synthesis . We conclude that these functional traits alone may be unsuitable for predicting growth of trees over broad scales. Determining the functional traits that predict vital rates under specific environmental conditions may generate more insight than a monolithic global relationship can offer.

How to cite this publication

C. E. Timothy Paine, Lucy Amissah, Harald Auge, Christopher Baraloto, Martín Baruffol, Nils Bourland, Helge Bruelheide, Kasso Daïnou, Roland C. de Gouvenain, Jean‐Louis Doucet, Susan J. Doust, Paul V. A. Fine, Claire Fortunel, Josephine Haase, Karen D. Holl, Hervé Jactel, Xuefei Li, Kaoru Kitajima, Julia Koricheva, Cristina Martínez‐Garza, Christian Messier, Alain Paquette, Christopher D Philipson, Daniel Piotto, Lourens Poorter, Juan M. Posada, Catherine Potvin, Kalle Rainio, Sabrina E. Russo, Mariacarmen Ruiz‐Jaen, Michael Scherer‐Lorenzen, Campbell O. Webb, S. Joseph Wright‬, Rakan A. Zahawi, Andy Hector (2015). Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 103(4), pp. 978-989, DOI: 10.1111/1365-2745.12401.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2015

Authors

35

Datasets

0

Total Files

0

Language

English

Journal

Journal of Ecology

DOI

10.1111/1365-2745.12401

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access