Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Generation of Axially Chiral Fluoroallenes through a Copper-Catalyzed Enantioselective β-Fluoride Elimination

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2021

Generation of Axially Chiral Fluoroallenes through a Copper-Catalyzed Enantioselective β-Fluoride Elimination

0 Datasets

0 Files

en
2021
Vol 143 (34)
Vol. 143
DOI: 10.1021/jacs.1c05769

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Dean Toste
Dean Toste

University of California, Berkeley

Verified
Thomas J. O’Connor
Binh Khanh
Jordan Nafie
+2 more

Abstract

Herein we report the copper-catalyzed silylation of propargylic difluorides to generate axially chiral, tetrasubstituted monofluoroallenes in both good yields (27 examples >80%) and enantioselectivities (82-98% ee). Compared to previously reported synthetic routes to axially chiral allenes (ACAs) from prochiral substrates, a mechanistically distinct reaction has been developed: the enantiodiscrimination between enantiotopic fluorides to set an axial stereocenter. DFT calculations and vibrational circular dichroism (VCD) suggest that β-fluoride elimination from an alkenyl copper intermediate likely proceeds through a syn-β-fluoride elimination pathway rather than an anti-elimination pathway. The effects of the C1-symmetric Josiphos-derived ligand on reactivity and enantioselectivity were investigated. Not only does this report showcase that alkenyl copper species (like their alkyl counterparts) can undergo β-fluoride elimination, but this elimination can be achieved in an enantioselective fashion.

How to cite this publication

Thomas J. O’Connor, Binh Khanh, Jordan Nafie, Peng Liu, Dean Toste (2021). Generation of Axially Chiral Fluoroallenes through a Copper-Catalyzed Enantioselective β-Fluoride Elimination. , 143(34), DOI: https://doi.org/10.1021/jacs.1c05769.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/jacs.1c05769

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access