Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. GBT-based local and global vibration analysis of thin-walled members

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Chapter in a book
English
2007

GBT-based local and global vibration analysis of thin-walled members

0 Datasets

0 Files

English
2007
Elsevier eBooks
DOI: 10.1533/9781845692292.36

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Nuno Silvestre
Nuno Silvestre

University of Lisbon

Verified
Dinar Camotim
Nuno Silvestre
Rui Bebiano

Abstract

This chapter discusses the use of numerical techniques to perform vibration analysis, the concepts of finite element analysis (FEA) and finite strip analysis (FSA). The literature review in the chapter has been organized according to the particular methodology employed: there are separate sub-sections dealing with investigations carried out by means of (1) the finite element method (mostly shell element discretizations), (2) the finite strip method and (iii) the generalized beam theory (GBT) – because the aim of the chapter is to present the fundamentals and illustrate the application of a GBT formulation to analyze the vibration behavior of thin-walled members, the last sub-section also includes a brief outline of its content. Silvestre and Camotim (2003) formulated, implemented, and validated an efficient beam finite element intended to perform GBT-based buckling analyses in the context of arbitrarily orthotropic thin-walled members. The most relevant steps involved in the formulation of this finite element, specialized for the vibration analysis of isotropic thin-walled members, are described briefly in the chapter.

How to cite this publication

Dinar Camotim, Nuno Silvestre, Rui Bebiano (2007). GBT-based local and global vibration analysis of thin-walled membersGBT-based local and global vibration analysis of thin-walled members. Elsevier eBooks, pp. 36-76, DOI: 10.1533/9781845692292.36,

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Chapter in a book

Year

2007

Authors

3

Datasets

0

Total Files

0

Language

English

DOI

10.1533/9781845692292.36

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access