0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTime series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting halfhourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).
Jeremy Irvin, Sharon Zhou, Gavin McNicol, Fred Lu, Vincent Liu, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Antje Lucas-Moffat, Carlo Trotta, Dario Papale, Domenico Vitale, Ivan Mammarella, Pavel Alekseychik, Mika Aurela, Anand Avati, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Sarah Féron, Mathias Goeckede, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Aram Kalhori, Andrew Kondrich, Derrick Y.F. Lai, Annalea Lohila, Avni Malhotra, Lutz Merbold, Bhaskar Mitra, Andrew Y. Ng, Mats B. Nilsson, Asko Noormets, Matthias Peichl, Camilo Rey‐Sánchez, Andrew D. Richardson, Benjamin R. K. Runkle, Karina VR Schäfer, Oliver Sonnentag, Ellen Stuart‐Haëntjens, Cove Sturtevant, Masahito Ueyama, Alex Valach, Rodrigo Vargas, George L. Vourlitis, Eric J. Ward, Guan Xhuan Wong, Donatella Zona, Ma. Carmelita Alberto, David P. Billesbach, Gerardo Celis, A. J. Dolman, Thomas Friborg, Kathrin Fuchs, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Lukas Hörtnagl, Adrien Jacotot, Franziska Koebsch, Kuno Kasak, Regine Maier, Timothy H. Morin, Eiko Nemitz, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Torsten Sachs, Ayaka Sakabe, Edward A. G. Schuur, Robert Shortt, Ryan C. Sullivan, Daphne Szutu, Eeva‐Stiina Tuittila, Andrej Varlagin, Joeseph G Verfaillie, Christian Wille, Lisamarie Windham‐Myers, Benjamin Poulter, Robert B. Jackson (2021). Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. , 308-309, DOI: https://doi.org/10.1016/j.agrformet.2021.108528.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
93
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.agrformet.2021.108528
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration