Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Fungal and bacterial necromass: Opposite drivers of mineral-associated organic carbon gains and losses

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2025

Fungal and bacterial necromass: Opposite drivers of mineral-associated organic carbon gains and losses

0 Datasets

0 Files

English
2025
Soil and Tillage Research
Vol 253
DOI: 10.1016/j.still.2025.106634

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Zihuan Fu
Yuxuan Zhang
Weiwen Qiu
+3 more

Abstract

Microbial necromass is a major contributor to mineral-associated organic carbon (MAOC), widely recognized as the primary and stable carbon (C) pool in soils. Nevertheless, long-term land use changes modify MAOC content and composition, including its fungal and bacterial contributions, which depend on soil types, particularly its hydraulic properties. Here, the impacts of over 30 years of land use, encompassing dryland pasture (DryPast), irrigated-pasture (IrrPast) and cropland (IrrCrop), on MAOC were evaluated across three representative soils with varying drainage characteristics: well-drained Lismore soil (LIS), moderately drained Templeton soil (TEM), and poorly drained Waterton/Temuka soil (WAT). Soil organic carbon (SOC) content and MAOC content decreased in order of IrrPast > DryPast > IrrCrop. MAOC determined the total SOC gains and losses after DryPast conversion to IrrPast and IrrCrop, respectively. Land use change had varying impacts on MAOC, which were influenced by the specific soil types. The well-drained LIS soil showed the highest MAOC increase, rising by 26 % following the conversion from DryPast to IrrPast. In contrast, the poorly drained WAT soil experienced the most significant MAOC reduction, decreasing by 22 % after the conversion to IrrCrop. Fungal necromass dominated MAOC gains, while bacterial necromass drove MAOC losses. Furthermore, the response of MAOC to land uses was primarily affected by labile C as the major source of microbial activity and binding agents. The stabilized fungal necromass is primarily protected within micropores of 0.2–3 µm. In contrast, bacterial necromass is largely constrained by the availability of labile nitrogen. Overall, the increase in fungal necromass and the decrease in bacterial necromass, driven by the interplay between specific management (e.g., irrigation or cultivation) and soil type (e.g., hydraulic properties), are important to interpret MAOC responses to changes in land use.

How to cite this publication

Zihuan Fu, Yuxuan Zhang, Weiwen Qiu, Waqas Mohy-Ud-Din, Zhifeng Yan, Yakov Kuzyakov (2025). Fungal and bacterial necromass: Opposite drivers of mineral-associated organic carbon gains and losses. Soil and Tillage Research, 253, pp. 106634-106634, DOI: 10.1016/j.still.2025.106634.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Soil and Tillage Research

DOI

10.1016/j.still.2025.106634

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access