0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRecent scanning tunneling microscopy studies of the intrinsic electronic properties of single-walled carbon nanotubes (SWNTs) are overviewed in this Account. A brief theoretical treatment of the electronic properties of SWNTs is developed, and then the effects of finite curvature and broken symmetry on electronic properties, the unique one-dimensional energy dispersion in nanotubes, the interaction between local spins and carriers in metallic nanotubes systems, and the atomic structure and electronic properties of intramolecular junctions are described. The implications of these studies for understanding fundamental one-dimensional physics and future nanotube device applications are also discussed.
Min Ouyang, Jinlin Huang, Charles M. Lieber (2002). Fundamental Electronic Properties and Applications of Single-Walled Carbon Nanotubes. Accounts of Chemical Research, 35(12), pp. 1018-1025, DOI: 10.1021/ar0101685.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2002
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Accounts of Chemical Research
DOI
10.1021/ar0101685
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access