0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAmmonia has been identified as a viable energy vector for power generation. Using dual-fuel operation that mixes the ammonia with higher reactivity gaseous fuel can be vital in enhancing ammonia combustion. This study examined the fundamental swirl combustion characteristics of fuel-lean premixed ammonia/biogas via a numerical approach. The flame was established at an input thermal power of 7 kW and a global equivalence ratio of 0.8. The numerical model was validated with biogas emissions data acquired through experimental work. At 20 mm downstream the burner, increased carbon dioxide mass fraction in the biogas lowered the peak flame temperature by around 300 K. Moreover, the deformation of flame temperature radial profiles was also found aggravated as carbon dioxide concentration in the biogas elevated from 0 % to 40 %. The reduction in premixed reactant mixture reactivity not only initiated flame temperature profile deformation but also reduced the peak Damköhler number significantly. The peak Damköhler number was lowered by a factor of ∼ 1.5 when carbon dioxide dilution in the biogas elevated by 40 %. The premixed combustion was directed into the thin reaction flamelets zone with elevated carbon dioxide mass fraction, owing to the intensified flow fluctuation. This, in turn, elevates the normalised flame turbulent propagating speed, gas flow average velocities and turbulent kinetic energy, notwithstanding that heat release rate and averaged laminar flame speed declined. In all, the presence of carbon dioxide has been shown to lower the ammonia/methane mixture reactivity whilst escalating the reacting flow fluctuation.
Guo Ren Mong, Meng Choung Chiong, Cheng Tung Chong, Jo-Han Ng, Syed Mashruk, Manh‐Vu Tran, Kiat Moon Lee, Nor Afzanizam Samiran, Keng Yinn Wong, Agustin Valera Medina (2022). Fuel-lean ammonia/biogas combustion characteristics under the reacting swirl flow conditions. Fuel, 331, pp. 125983-125983, DOI: 10.1016/j.fuel.2022.125983.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Fuel
DOI
10.1016/j.fuel.2022.125983
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access