0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis study shows that AlSi10Mg parts with an extremely fine microstructure and a controllable texture can be obtained through selective laser melting (SLM). Selective laser melting creates complex functional products by selectively melting powder particles of a powder bed layer after layer using a high-energy laser beam. The high-energy density applied to the material and the additive character of the process result in a unique material structure. To investigate this material structure, cube-shaped SLM parts were made using different scanning strategies and investigated by microscopy, X-ray diffraction and electron backscattered diffraction. The experimental results show that the high thermal gradients occurring during SLM lead to a very fine microstructure with submicron-sized cells. Consequently, the AlSi10Mg SLM products have a high hardness of 127±3 Hv0.5 even without the application of a precipitation hardening treatment. Furthermore, due to the unique solidification conditions and the additive character of the process, a morphological and crystallographic texture is present in the SLM parts. Thanks to the knowledge gathered in this paper on how this texture is formed and how it depends on the process parameters, this texture can be controlled. A strong fibrous 〈100〉 texture can be altered into a weak cube texture along the building and scanning directions when a rotation of 90° of the scanning vectors within or between the layers is applied.
Lore Thijs, Karolien Kempen, Jean-pierre Kruth, Jan Van Humbeeck (2012). Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Materialia, 61(5), pp. 1809-1819, DOI: 10.1016/j.actamat.2012.11.052.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Acta Materialia
DOI
10.1016/j.actamat.2012.11.052
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access