0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper describes a method to detect the presence of bacteria in aqueous samples, based on the capture of bacteria on a syringe filter, and the infection of targeted bacterial species with a bacteriophage (phage). The use of phage as a reagent provides two opportunities for signal amplification: (i) the replication of phage inside a live bacterial host and (ii) the delivery and expression of the complementing gene that turns on enzymatic activity and produces a colored or fluorescent product. Here we demonstrate a phage-based amplification scheme with an M13KE phage that delivers a small peptide motif to an F+, α-complementing strain of Escherichia coli K12, which expresses the ω-domain of β-galactosidase (β-gal). The result of this complementation—an active form of β-gal—was detected colorimetrically, and the high level of expression of the ω-domain of β-gal in the model K12 strains allowed us to detect, on average, five colony-forming units (CFUs) of this strain in 1 L of water with an overnight culture-based assay. We also detected 50 CFUs of the model K12 strain in 1 L of water (or 10 mL of orange juice, or 10 mL of skim milk) in less than 4 h with a solution-based assay with visual readout. The solution-based assay does not require specialized equipment or access to a laboratory, and is more rapid than existing tests that are suitable for use at the point of access. This method could potentially be extended to detect many different bacteria with bacteriophages that deliver genes encoding a full-length enzyme that is not natively expressed in the target bacteria.
Ratmir Derda, Matthew R. Lockett, Sindy K. Y. Tang, Renée C. Fuller, E. Jane Maxwell, Benjamin Breiten, Christine Cuddemi, Ayşegül Özdoğan, George M M Whitesides (2013). Filter-Based Assay for Escherichia coli in Aqueous Samples Using Bacteriophage-Based Amplification. , 85(15), DOI: https://doi.org/10.1021/ac400961b.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/ac400961b
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access