0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper deals with fault-tolerant master-slave synchronization for Lur'e systems using time-delay feedback control. Taking a general nature of fault in the master system into account, a new synchronization scheme, namely, fault-tolerant master-slave synchronization, is proposed, by which the master-slave synchronization can be achieved no matter if the fault occurs or not. By making use of an observer-based fault estimator and a modified time-delay feedback controller, the fault-tolerant master-slave synchronization is formulated so as to discuss the global asymptotic stability of the error system and the bound of energy gain from fault to state and fault estimation error vectors. Some new delay-dependent criteria are derived to analyze the synchronization error system, and based on the analysis results, a sufficient condition on the existence of such a master-slave synchronization scheme and a solution to the controller and fault-estimator gain matrices are obtained in terms of linear matrix inequalities. Finally, a Chua's circuit is used to illustrate the effectiveness of the proposed method.
Maiying Zhong, Qinglong Qinglong Han (2008). Fault-Tolerant Master–Slave Synchronization for Lur'e Systems Using Time-Delay Feedback Control. IEEE Transactions on Circuits and Systems I Regular Papers, 56(7), pp. 1391-1404, DOI: 10.1109/tcsi.2008.2006218.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2008
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Circuits and Systems I Regular Papers
DOI
10.1109/tcsi.2008.2006218
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access