0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNatural deterioration of mild steel exposed to marine environment compromises the long-term integrity, serviceability and safety of new and existing infrastructure and increases the risk of structural failure. Welded structures are known to be prone to even higher risks as a result of adverse effects of pitting corrosion in weld-heated areas. A bi-modal model has been shown recently to be a better description for the long-term development of the maximum depth of pits. Also, the statistics of pit depth have been shown to be better represented, for long term exposures, by the Frechet extreme value distribution. Both new developments present challenges for structural reliability analysis. Herein a linearization is used to represent long-term development of pit depth. It is shown that data for maximum pit depths can be separated into those with Gumbel statistics and those for which a Frechet distribution is more appropriate. An example is given for the reliability analysis of a welded pipeline subjected to localized corrosion. The effect of random variable uncertainty is assessed using a sensitivity study. Results show the considerable influence on the probability of failure of pit diameter and the parameters describing the pitting corrosion model.
Igor A. Chaves, Robert Melchers (2014). Extreme value analysis for assessing structural reliability of welded offshore steel structures. Structural Safety, 50, pp. 9-15, DOI: 10.1016/j.strusafe.2014.03.007.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
Structural Safety
DOI
10.1016/j.strusafe.2014.03.007
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access