Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Exploring the role of genetic confounding in the association between maternal and offspring body mass index: evidence from three birth cohorts

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2019

Exploring the role of genetic confounding in the association between maternal and offspring body mass index: evidence from three birth cohorts

0 Datasets

0 Files

en
2019
Vol 49 (1)
Vol. 49
DOI: 10.1093/ije/dyz095

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Paul M Ridker
Paul M Ridker

Harvard University

Verified
Tom A. Bond
Ville Karhunen
Matthias Wielscher
+14 more

Abstract

Abstract Background Maternal pre-pregnancy body mass index (BMI) is positively associated with offspring birth weight (BW) and BMI in childhood and adulthood. Each of these associations could be due to causal intrauterine effects, or confounding (genetic or environmental), or some combination of these. Here we estimate the extent to which the association between maternal BMI and offspring body size is explained by offspring genotype, as a first step towards establishing the importance of genetic confounding. Methods We examined the associations of maternal pre-pregnancy BMI with offspring BW and BMI at 1, 5, 10 and 15 years, in three European birth cohorts (n ≤11 498). Bivariate Genomic-relatedness-based Restricted Maximum Likelihood implemented in the GCTA software (GCTA-GREML) was used to estimate the extent to which phenotypic covariance was explained by offspring genotype as captured by common imputed single nucleotide polymorphisms (SNPs). We merged individual participant data from all cohorts, enabling calculation of pooled estimates. Results Phenotypic covariance (equivalent here to Pearson’s correlation coefficient) between maternal BMI and offspring phenotype was 0.15 [95% confidence interval (CI): 0.13, 0.17] for offspring BW, increasing to 0.29 (95% CI: 0.26, 0.31) for offspring 15 year BMI. Covariance explained by offspring genotype was negligible for BW [–0.04 (95% CI: –0.09, 0.01)], but increased to 0.12 (95% CI: 0.04, 0.21) at 15 years, which is equivalent to 43% (95% CI: 15%, 72%) of the phenotypic covariance. Sensitivity analyses using weight, BMI and ponderal index as the offspring phenotype at all ages showed similar results. Conclusions Offspring genotype explains a substantial fraction of the covariance between maternal BMI and offspring adolescent BMI. This is consistent with a potentially important role for genetic confounding as a driver of the maternal BMI–offspring BMI association.

How to cite this publication

Tom A. Bond, Ville Karhunen, Matthias Wielscher, Juha Auvinen, Minna Männikkö, Sirkka Keinänen‐Kiukaanniemi, Marc J. Gunter, Janine F. Felix, Inga Prokopenko, Jian Yang, Peter M. Visscher, David M. Evans, Sylvain Sebért, Alex Lewin, Paul F. O’Reilly, Debbie A. Lawlor, Paul M Ridker (2019). Exploring the role of genetic confounding in the association between maternal and offspring body mass index: evidence from three birth cohorts. , 49(1), DOI: https://doi.org/10.1093/ije/dyz095.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

17

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1093/ije/dyz095

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access