Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Exploring the Best Classification from Average Feature Combination

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2014

Exploring the Best Classification from Average Feature Combination

0 Datasets

0 Files

English
2014
Abstract and Applied Analysis
Vol 2014
DOI: 10.1155/2014/602763

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Hamid Reza Karimi
Hamid Reza Karimi

Politecnico di Milano

Verified
Jian Hou
Weixue Liu
Hamid Reza Karimi

Abstract

Feature combination is a powerful approach to improve object classification performance. While various combination algorithms have been proposed, average combination is almost always selected as the baseline algorithm to be compared with. In previous work we have found that it is better to use only a sample of the most powerful features in average combination than using all. In this paper, we continue this work and further show that the behaviors of features in average combination can be integrated into the k -Nearest-Neighbor (kNN) framework. Based on the kNN framework, we then propose to use a selection based average combination algorithm to obtain the best classification performance from average combination. Our experiments on four diverse datasets indicate that this selection based average combination performs evidently better than the ordinary average combination, and thus serves as a better baseline. Comparing with this new and better baseline makes the claimed superiority of newly proposed combination algorithms more convincing. Furthermore, the kNN framework is helpful in understanding the underlying mechanism of feature combination and motivating novel feature combination algorithms.

How to cite this publication

Jian Hou, Weixue Liu, Hamid Reza Karimi (2014). Exploring the Best Classification from Average Feature Combination. Abstract and Applied Analysis, 2014, pp. 1-7, DOI: 10.1155/2014/602763.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2014

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Abstract and Applied Analysis

DOI

10.1155/2014/602763

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access