0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract A high degree of uncertainty persists regarding current and future emissions of methane from both natural and constructed wetlands. Part of the problem is the existence of ‘hot spots’ of methane flux, which have not been clearly identified and studied at multiple scales. Methane has a short lifetime compared to carbon dioxide; thus, efforts to avoid methane hot spots from constructed wetlands can promptly decelerate the rate of atmospheric warming. In this study we measured methane fluxes using flux towers in a restored oligohaline wetland in the Sacramento–San Joaquin River Delta, where we previously identified a hot spot of methane flux using footprint-weighed flux maps and chambers. Our main objectives with this study were to determine why this hot spot occurs and what are the biogeochemical and microbiological conditions that lead to these high methane fluxes. We found four main mechanisms that explain the existence of the hot spot. (1) The hot spot was associated with areas where the water level was closer to the surface (2) Methane originated mostly from older unoxidized peat in deeper layers, which had a shorter migration pathway to the atmosphere at the hot spot location due to soil disturbance during wetland construction. (3) Relatively lower methane oxidation in the hot spot in the upper soil layer (10–30 cm under the surface), deduced from isotopic profiles in porewater carbon and upper-level methanotroph abundance. (4) Higher ebullition events at the hot spot that can be related to low water levels and lower bulk density throughout the soil profile. This study thus suggests that mitigating soil disturbances during wetland construction and managing water level can reduce the occurrence and magnitude of hot spots of methane flux in constructed wetlands.
Camilo Rey‐Sánchez, Ariane Arias‐Ortiz, Kuno Kasak, Robert Shortt, Daphne Szutu, Joseph Verfaillie, Thomas D. Lorenson, Martin Liira, Peeter Somelar, Mikk Espenberg, Dennis Baldocchi (2025). Explaining hot spots of methane flux in a restored wetland: the role of water level, soil disturbance, and methanotrophy. , 20(7), DOI: https://doi.org/10.1088/1748-9326/ade45b.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1088/1748-9326/ade45b
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration