0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper presents a data-driven approach to determine the load and flexural capacities of reinforced concrete (RC) beams strengthened with fabric reinforced cementitious matrix (FRCM) composites in flexure. A total of seven machine learning (ML) models such as kernel ridge regression, K-nearest neighbors, support vector regression, classification and regression trees, random forest, gradient boosted trees, and extreme gradient boosting (xgBoost) are evaluated to propose the best predictive model for FRCM-strengthened beams. Beam geometry, internal steel reinforcement area, FRCM reinforcement area, and mechanical characteristics of concrete, steel, and FRCM are the main input parameters included in the database. Among the studied ML models, the xgBoost model is the most accurate model with the highest coefficient of determination (R2=99.3%) and least root mean square (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). A comparative study of the performance of the proposed and existing analytical models revealed the superior predictive capability and robustness of the proposed model. The predicted flexural and load capacities of the beams based on the existing analytical models are highly scattered and either over-conservative or unsafe. A unified SHapley Additive exPlanations approach is employed to explain the output of the best ML model and identify the most significant input features and interactions that influence the capacity of FRCM-strengthened RC beams in flexure. Furthermore, a reliability analysis is performed to calibrate the resistance reduction factor (ϕ) to achieve a specified target reliability index (βT=3.5).
Tadesse G. Wakjira, Mohamed Ibrahim, Usama Ebead, M. Shahria Alam (2022). Explainable machine learning model and reliability analysis for flexural capacity prediction of RC beams strengthened in flexure with FRCM. , 255, DOI: https://doi.org/10.1016/j.engstruct.2022.113903.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.engstruct.2022.113903
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access