Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Experimental Study on the Strength Characteristics of Organic-Matter-Contaminated Red Soil in Yulin

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2025

Experimental Study on the Strength Characteristics of Organic-Matter-Contaminated Red Soil in Yulin

0 Datasets

0 Files

en
2025
Vol 15 (6)
Vol. 15
DOI: 10.3390/buildings15060853

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Bai Yang
Bai Yang

Institution not specified

Verified
Jinbin Long
Hangyu Yan
Haofeng Zhou
+2 more

Abstract

In order to study the strength characteristics of organic-matter-contaminated red soil and the improvement effects of different modifiers, the red soil in the Yulin area was taken as the research object, and triaxial compression tests were carried out to study the effects of different mass fractions (0%, 2%, 4%, 6%, 8%) of organic matter (sodium humate) on the strength characteristics of red soil. Unconfined compressive strength (UCS) tests and scanning electron microscopy (SEM) tests were carried out to study the improvement effects of different amounts of lignin, fly ash, and xanthan gum on organic-matter-contaminated red soil (organic matter content of 8%). The results of the tests showed that the cohesion and internal friction angle of red soil both tended to decrease with the increase in organic matter content. When the organic matter content increased from 0% to 8%, the cohesion of the red soil decreased from 60.98 kPa to 40.07 kPa, a decrease of 34.29%; and the internal friction angle decreased from 17.42° to 7.28°, a decrease of 58.21%. The stress–strain relationship curves of organic-matter-contaminated red soil all show a hardening type. Under different confining pressures, as the organic matter content increased, the shear strength of the red soil decreased continuously. The unconfined compressive strength of organic-matter-contaminated red soil increased with the increase in lignin content, and increased first and then decreased with the increase in fly ash content and xanthan gum content. Through comparative analysis, it was found that the fly ash with a content of 15% had the best improvement effect. The lignin-amended red soil enhanced the connection of soil particles through reinforcement, reduced pores, and improved soil strength. Fly ash improved the acidification reaction, and the hydrates filled the pores and enhanced the soil strength. Xanthan gum improved the red soil by absorbing water and promoting microbial growth, further enhancing the bonding force between soil particles. This study can provide a reference for engineering construction and red soil improvement in red soil areas.

How to cite this publication

Jinbin Long, Hangyu Yan, Haofeng Zhou, Zuoming Xie, Bai Yang (2025). Experimental Study on the Strength Characteristics of Organic-Matter-Contaminated Red Soil in Yulin. , 15(6), DOI: https://doi.org/10.3390/buildings15060853.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.3390/buildings15060853

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access