0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper presents a study on the shear behavior of reinforced concrete (RC) beams strengthened by jacketing the surfaces of the beams using ultra-high performance fiber reinforced concrete (UHPC). The surfaces of the RC beams were prepared by sandblasting and UHPC was cast in situ over the surfaces of RC beams. The beams were strengthened using two different strengthening configurations; (i) two longitudinal sides strengthening (ii) three sides strengthening. The bond between normal concrete and UHPC was examined by conducting splitting tensile strength and slant shear strength tests on composite cylindrical specimens cast using normal concrete and UHPC. The control and strengthened beam specimens were tested using four-point loading arrangement maintaining different shear span-to-depth ratios. The results of tested beams showed the beneficial effects of strengthening the RC beams using UHPC, as evident from enhancement of the shear capacity and shifting of the failure mode from brittle to ductile with more stiff behavior. In addition, a non-linear finite element model (FEM) was developed to examine the sufficiency of the experimental results used to study the shear behavior of control and strengthened beams. The failure loads and the crack patterns determined experimentally matched well with those predicted using the proposed model with a reasonably good degree of accuracy.
Ashraf A. Bahraq, Mohammed Al-osta, Shamsad Ahmad, Mesfer M. Al‐Zahrani, Salah Othman Aldulaijan, Muhammad Kalimur Rahman (2019). Experimental and Numerical Investigation of Shear Behavior of RC Beams Strengthened by Ultra-High Performance Concrete. International Journal of Concrete Structures and Materials, 13(1), DOI: 10.1186/s40069-018-0330-z.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
International Journal of Concrete Structures and Materials
DOI
10.1186/s40069-018-0330-z
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access