Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Experimental and analytical studies on shear behaviors of FRP-concrete composite sections

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Experimental and analytical studies on shear behaviors of FRP-concrete composite sections

0 Datasets

0 Files

English
2020
Engineering Structures
Vol 215
DOI: 10.1016/j.engstruct.2020.110649

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Peng Feng
Peng Feng

Tsinghua University

Verified
Xingxing Zou
Peng Feng
Yi Bao
+2 more

Abstract

The design of FRP profile-concrete composite sections, including beams and decks, is usually governed by the shear strength of the FRP profiles. However, analytical methods that can precisely predict the shear capacity of the composite sections have not been well developed, because there is lack of knowledge of the FRP-concrete composite action and distribution of shear stress along the FRP. This paper investigates the shear behaviors of FRP-concrete composite sections and develops formulae to predict the shear capacity of the composite sections. First, flexural tests of three FRP-concrete composite beams were conducted to investigate the shear failure mode and interface behaviors. All the beams failed in FRP shear fracture along horizontal direction. Then, push-out tests were used to determine the slip property for the FRP-concrete interface which reveals that FRP stay-in-place form and steel bolts can ensure full and partial composite action, respectively. Based on the experimental study, closed-form equations to compute the maximum shear stress are derived and validated against experimental data in this paper and literature. Finally, simple yet reliable equations of shear capacity are derived and recommended for engineers to design the FRP-concrete composite sections.

How to cite this publication

Xingxing Zou, Peng Feng, Yi Bao, Jingquan Wang, Haohui Xin (2020). Experimental and analytical studies on shear behaviors of FRP-concrete composite sections. Engineering Structures, 215, pp. 110649-110649, DOI: 10.1016/j.engstruct.2020.110649.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Engineering Structures

DOI

10.1016/j.engstruct.2020.110649

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access