0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Background Alternative splicing (AS) in protein-coding sequences has emerged as an important mechanism of regulation and diversification of animal gene function. By contrast, the extent and roles of alternative events including AS and alternative transcription initiation (ATI) within the 5'-untranslated regions (5'UTRs) of mammalian genes are not well characterized. Results We evaluated the abundance, conservation and evolution of putative regulatory control elements, namely, upstream start codons (uAUGs) and open reading frames (uORFs), in the 5'UTRs of human and mouse genes impacted by alternative events. For genes with alternative 5'UTRs, the fraction of alternative sequences (those present in a subset of the transcripts) is much greater than that in the corresponding coding sequence, conceivably, because 5'UTRs are not bound by constraints on protein structure that limit AS in coding regions. Alternative regions of mammalian 5'UTRs evolve faster and are subject to a weaker purifying selection than constitutive portions. This relatively weak selection results in over-abundance of uAUGs and uORFs in the alternative regions of 5'UTRs compared to constitutive regions. Nevertheless, even in alternative regions, uORFs evolve under a stronger selection than the rest of the sequences, indicating that some of the uORFs are conserved regulatory elements; some of the non-conserved uORFs could be involved in species-specific regulation. Conclusion The findings on the evolution and selection in alternative and constitutive regions presented here are consistent with the hypothesis that alternative events, namely, AS and ATI, in 5'UTRs of mammalian genes are likely to contribute to the regulation of translation.
Alissa Resch, Aleksey Y. Ogurtsov, Igor B. Rogozin, Svetlana A. Shabalina, Eugene V Koonin (2009). Evolution of alternative and constitutive regions of mammalian 5'UTRs. , 10(1), DOI: https://doi.org/10.1186/1471-2164-10-162.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1186/1471-2164-10-162
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access