0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis study used the ECOSSE model (v. 5.0.1) to simulate soil respiration (Rs) flux-es estimated from ecosystem respiration (Reco) for eight European permanent grassland (PG) sites with varying grass species, soils, and management. The main aim was to evaluate the strengths and weaknesses of the model in estimating Rs from grasslands, and to gain a better understanding of the terrestrial carbon cycle and how Rs is affect-ed by natural and anthropogenic drivers. Results revealed that the current version of the ECOSSE model may not be reliable for estimating daily Rs fluxes, particularly in dry sites. However, it could still be a valuable tool for predicting cumulative Rs from PG. Additionally, the model demonstrated accurate simulation of Rs in response to grass cutting and slurry application practices. The sensitivity analyses and attribution tests revealed that increased soil organic carbon (SOC), soil pH, temperature, reduced precipitation, and lower water table (WT) depth could lead to increased Rs from soils. The variability of Rs fluxes across sites and years was attributed to climate, weather, soil properties, and management practices. The study suggests the need for additional development and application of the ECOSSE model, specifically in dry and low input sites, to evaluate the impacts of various land management interventions on carbon sequestration and emissions in PG.
Mohamed Abdalla, Iris Feigenwinter, Mark Richards, Sylvia H. Vetter, Georg Wohlfahrt, Ute Skiba, Krisztina Pintér, Zoltán Nagy, Stanislav Hejduk, Nina Buchmann, Paul Newell‐Price, Pete Smith (2023). Evaluation of the ECOSSE-Model for Estimating Soil Respiration from Eight European Permanent Grassland Sites. , DOI: https://doi.org/10.20944/preprints202305.0320.v1.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
12
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.20944/preprints202305.0320.v1
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access