Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Evaluation of Different Topologies of Integrated Capillaries in Effective Structural Health Monitoring System Produced by 3D Printing

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2015

Evaluation of Different Topologies of Integrated Capillaries in Effective Structural Health Monitoring System Produced by 3D Printing

0 Datasets

0 Files

English
2015
Structural Health Monitoring
DOI: 10.12783/shm2015/22

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Herman Terryn
Herman Terryn

Institution not specified

Verified
Maria Strantza
Reza Vafadari
Dieter De Baere
+8 more

Abstract

Over the last years the structural health monitoring (SHM) systems investigations have been focused on providing structures with similar functionality as the biological nervous system. There are numerous studies that have investigated this. In those studies a large number of sensors collects an extensive amount of data. In this study we demonstrate a novel effective SHM (eSHM) system which can monitor a structure with one single pressure sensor. The eSHM system can detect cracks by means of a system of capillaries integrated in a structure. This structure with the integrated capillaries can be produced by 3D printing, also known as additive manufacturing (AM). The principle of the eSHM system is monitoring the pressure variations in a network of capillaries. The effectiveness of this system is linked with the greatest strength of AM, which is the capability to create complex geometrical structures. Before the implementation in real structures, it is of crucial importance to be sure that the capillaries do not negatively influence the fatigue behaviour of the structures and the crack initiation. For this, the main objective of this study is to investigate different locations for a straight capillary incorporated into a four-point bending test specimen. The investigated titanium specimens with the integrated eSHM system are produced by AM. The capillary is located in the longitudinal dimension of the test specimen on the tension area of a four-point bending setup. We evaluate three different distances of the capillary to the outer surface of the test specimens. Furthermore, the results are also obtained by finite element simulations. We can conclude that –for the considered structure– the presence of the capillary does not influence the fatigue life negatively. On the other hand, cracks nucleate in the capillary region. Our future work will focus on the improvement of the capillary’s robustness. Other parameters like roughness effect and residual stresses should be also taken into account. doi: 10.12783/SHM2015/22

How to cite this publication

Maria Strantza, Reza Vafadari, Dieter De Baere, Marleen Rombouts, Isabelle Vandendael, Herman Terryn, Michaël Hinderdael, Ali Rezaei, Wim Van Paepegem, Patrick Guillaume, Danny Van Hemelrijck (2015). Evaluation of Different Topologies of Integrated Capillaries in Effective Structural Health Monitoring System Produced by 3D Printing. Structural Health Monitoring, DOI: 10.12783/shm2015/22.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2015

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

Structural Health Monitoring

DOI

10.12783/shm2015/22

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access