Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Evaluation of agriculture-food 4.0 supply chain approaches using Fermatean probabilistic hesitant-fuzzy sets based decision making model

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Evaluation of agriculture-food 4.0 supply chain approaches using Fermatean probabilistic hesitant-fuzzy sets based decision making model

0 Datasets

0 Files

en
2023
Vol 138
Vol. 138
DOI: 10.1016/j.asoc.2023.110170

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Witold Pedrycz
Witold Pedrycz

University of Alberta

Verified
Sarah Qahtan
Hassan A. Alsattar
A. A. Zaidan
+4 more

Abstract

The benchmarking of agri-food 4.0 supply chain (Agri4SC) falls under the multiple criteria problem in supply chain visibility (SCV) and supply chain resource integration (SCRI) for improving data analytics capabilities and achieving sustainable performance (SP). It is considered a multiple criteria decision-making (MCDM) problem due to three main concerns, namely, multiple Agri4SC evaluation criteria including the SCV, SCRI and SP criteria. These criteria have relative importance and trade-offs. Despite the tremendous efforts over the last years, none of the developed Agri4SCs have met all of the essential Agri4SC evaluation criteria. Another concern raised in the evaluation and benchmarking of the Agri4SC is the uncertainty of experts. Thus, the main contribution of this research is to propose an Agri4SC benchmarking framework in SCV and SCRI for improving data analytics capabilities and achieving SP based on an extension of the proposed Fermatean probabilistic hesitant fuzzy sets (FPHFSs) and MCDM methods. The methodology process is divided into six main parts. Firstly, an Agri4SC decision matrix is formulated based on the intersection of the Agri4SC alternatives and criteria to cover multiple Agri4SC evaluation criteria issues. Secondly, novel FPHFSs are proposed along with their operational laws, score function, accuracy function, Fermatean probabilistic hesitant fuzzy average mean operator and Fermatean probabilistic hesitant fuzzy weighted average operator. The FPHFS can encompass more sophisticated and uncertain evaluation information. Thirdly, Fermatean probabilistic hesitant fuzzy weighted zero inconsistency is formulated to assign weights to the evaluation criteria. Fourthly, the Fermatean probabilistic hesitant fuzzy decision by opinion score method (FPH-FDOSM) is formulated and used to score the alternatives that were evaluated subjectively based on SCV criteria. Fifthly, the FPH-FDOSM-based multi attributive ideal-real comparative analysis (MAIRCA) scoring method with equal probabilities is proposed to score Agri4SC alternatives that were evaluated subjectively based on weighted economic, environmental and social factors. Lastly, the MAIRCA ranking method with unequal probabilities is introduced to benchmark Agri4SC alternatives that were evaluated objectively based on the weighted subcriteria of SP and the trade-offs amongst the identified criteria. The robustness and reliability of the results are tested via sensitivity analysis and Spearman's correlation coefficient.

How to cite this publication

Sarah Qahtan, Hassan A. Alsattar, A. A. Zaidan, Muhammet Deveci, Dragan Pamučar, Dursun Delen, Witold Pedrycz (2023). Evaluation of agriculture-food 4.0 supply chain approaches using Fermatean probabilistic hesitant-fuzzy sets based decision making model. , 138, DOI: https://doi.org/10.1016/j.asoc.2023.110170.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1016/j.asoc.2023.110170

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access