Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Evaluating Water Infiltration and Runoff: Stretcher Bond vs. 45° Herringbone Patterns in Permeable Interlocking Concrete Pavements

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2025

Evaluating Water Infiltration and Runoff: Stretcher Bond vs. 45° Herringbone Patterns in Permeable Interlocking Concrete Pavements

0 Datasets

0 Files

English
2025
CivilEng
Vol 6 (2)
DOI: 10.3390/civileng6020024

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohammed Salah Nasr
Mohammed Salah Nasr

Institution not specified

Verified
Mohammed Al-Fatlawi
Fatima Muslim Hadi
Baneen M. H. Al-khafaji
+8 more

Abstract

Pavement deterioration is often the result of intense traffic and increased runoff from storms, floods, or other environmental factors. A practical solution to this challenge involves the use of permeable pavements, such as permeable interlocking concrete pavement (PICP), which are designed to effectively manage water runoff while supporting heavy traffic. This research investigates the effectiveness of PICP in two distinct surface patterns: stretcher bond and 45° herringbone, by assessing their performance in terms of water infiltration and runoff using two different methods. The first approach has been conducted experimentally using a laboratory apparatus designed to simulate rainfall. Various conditions were applied during the performance tests, including longitudinal (L-Slope) and transverse (T-Slope) slopes of (0, 2, and 4%) and rainfall intensities of (40 and 80 L/min). The second approach has been implemented theoretically using Surfer 2.0 software to simulate the distribution of infiltrated water underneath the layers of PICP. Moreover, the behavior of PICP has been analyzed statistically using artificial neural networks (ANNs). The results indicated that at a rainfall intensity of 40 L/min, equal infiltration was observed in both patterns on 0% and 4% T-Slope. However, the 45° herringbone PICP showed better infiltration on the 8% T-Slope. Additionally, at 80 L/min rainfall, equal infiltration was observed in both patterns on 0% L-Slope for 0% and 4% T-Slope. The 45° herringbone PICP also demonstrated higher water infiltration on the 8% T-Slope, and this trend continued as the L-Slope increased. PICP with a 45° herringbone surface pattern exhibited superiority in reducing runoff compared to the stretcher bond pattern. The statistical models for the stretcher bond and 45° herringbone patterns demonstrate high accuracy, as evidenced by their correlation coefficient (R2) values of 99.97% and 97.32%, respectively, which confirms their validity. Despite the variations between the two forms of PICP, both are strongly endorsed as excellent alternatives to conventional pavement.

How to cite this publication

Mohammed Al-Fatlawi, Fatima Muslim Hadi, Baneen M. H. Al-khafaji, Safaa A. Hussein, Tamar Maitham Al-Asedi, Maryam M. Al-Aarajy, Ahmed Naïf Al-Khazraji, Tameem Mohammed Hashim, Ali Shubbar, Mohammed Salah Nasr, Thair Jabbar Mizhir Alfatlawi (2025). Evaluating Water Infiltration and Runoff: Stretcher Bond vs. 45° Herringbone Patterns in Permeable Interlocking Concrete Pavements. CivilEng, 6(2), pp. 24-24, DOI: 10.3390/civileng6020024.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

CivilEng

DOI

10.3390/civileng6020024

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access