Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Ensemble modelling, uncertainty and robust predictions of organic carbon in long‐term bare‐fallow soils

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

Ensemble modelling, uncertainty and robust predictions of organic carbon in long‐term bare‐fallow soils

0 Datasets

0 Files

en
2020
Vol 27 (4)
Vol. 27
DOI: 10.1111/gcb.15441

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Pete Smith
Pete Smith

University of Aberdeen

Verified
Roberta Farina
Renáta Sándor
Mohamed Abdalla
+37 more

Abstract

Abstract Simulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle scenarios to support climate‐change studies. It is imperative to increase confidence in long‐term predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC simulated from an ensemble of 26 process‐based C models by comparing simulations to experimental data from seven long‐term bare‐fallow (vegetation‐free) plots at six sites: Denmark (two sites), France, Russia, Sweden and the United Kingdom. The decay of SOC in these plots has been monitored for decades since the last inputs of plant material, providing the opportunity to test decomposition without the continuous input of new organic material. The models were run independently over multi‐year simulation periods (from 28 to 80 years) in a blind test with no calibration (Bln) and with the following three calibration scenarios, each providing different levels of information and/or allowing different levels of model fitting: (a) calibrating decomposition parameters separately at each experimental site (Spe); (b) using a generic, knowledge‐based, parameterization applicable in the Central European region (Gen); and (c) using a combination of both (a) and (b) strategies (Mix). We addressed uncertainties from different modelling approaches with or without spin‐up initialization of SOC. Changes in the multi‐model median (MMM) of SOC were used as descriptors of the ensemble performance. On average across sites, Gen proved adequate in describing changes in SOC, with MMM equal to average SOC (and standard deviation) of 39.2 (±15.5) Mg C/ha compared to the observed mean of 36.0 (±19.7) Mg C/ha (last observed year), indicating sufficiently reliable SOC estimates. Moving to Mix (37.5 ± 16.7 Mg C/ha) and Spe (36.8 ± 19.8 Mg C/ha) provided only marginal gains in accuracy, but modellers would need to apply more knowledge and a greater calibration effort than in Gen, thereby limiting the wider applicability of models.

How to cite this publication

Roberta Farina, Renáta Sándor, Mohamed Abdalla, Jorge Álvaro‐Fuentes, Luca Bechini, Martin A. Bolinder, Lorenzo Brilli, Claire Chenu, Hugues Clivot, Massimiliano De Antoni Migliorati, Claudia Di Bene, Christopher D. Dorich, Fiona Ehrhardt, Fabien Ferchaud, Nuala Fitton, Rosa Francaviglia, Uwe Franko, Donna Giltrap, Brian Grant, Bertrand Guenet, Matthew Tom Harrison, Miko U. F. Kirschbaum, Katrin Kuka, Liisa Kulmala, Jari Liski, Matthew J. McGrath, Elizabeth A. Meier, Lorenzo Menichetti, Fernando Moyano, Claas Nendel, Sylvie Recous, Nils Reibold, A. Shepherd, Ward Smith, Pete Smith, Jean‐François Soussana, Tommaso Stella, Arezoo Taghizadeh‐Toosi, Elena Tsutskikh, Gianni Bellocchi (2020). Ensemble modelling, uncertainty and robust predictions of organic carbon in long‐term bare‐fallow soils. , 27(4), DOI: https://doi.org/10.1111/gcb.15441.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

40

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1111/gcb.15441

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access