0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe demonstrate the piezoelectric effect on the responsivity of a metal−semiconductor−metal ZnO micro-/nanowire photodetector. The responsivity of the photodetector is respectively enhanced by 530%, 190%, 9%, and 15% upon 4.1 pW, 120.0 pW, 4.1 nW, and 180.4 nW UV light illumination onto the wire by introducing a −0.36% compressive strain in the wire, which effectively tuned the Schottky barrier height at the contact by the produced local piezopotential. After a systematic study on the Schottky barrier height change with tuning of the strain and the excitation light intensity, an in-depth understanding is provided about the physical mechanism of the coupling of piezoelectric, optical, and semiconducting properties. Our results show that the piezo-phototronic effect can enhance the detection sensitivity more than 5-fold for pW levels of light detection.
Qing Yang, Xin Guo, Wenhui Wang, Yan Zhang, Sheng Xu, Der‐Hsien Lien, Zhong Lin Wang (2010). Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect. , 4(10), DOI: https://doi.org/10.1021/nn1022878.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2010
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nn1022878
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access