0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper is concerned with energy-to-peak state estimation on static neural networks (SNNs) with interval time-varying delays. The objective is to design suitable delay-dependent state estimators such that the peak value of the estimation error state can be minimized for all disturbances with bounded energy. Note that the Lyapunov-Krasovskii functional (LKF) method plus proper integral inequalities provides a powerful tool in stability analysis and state estimation of delayed NNs. The main contribution of this paper lies in three points: 1) the relationship between two integral inequalities based on orthogonal and nonorthogonal polynomial sequences is disclosed. It is proven that the second-order Bessel-Legendre inequality (BLI), which is based on an orthogonal polynomial sequence, outperforms the second-order integral inequality recently established based on a nonorthogonal polynomial sequence; 2) the LKF method together with the second-order BLI is employed to derive some novel sufficient conditions such that the resulting estimation error system is globally asymptotically stable with desirable energy-to-peak performance, in which two types of time-varying delays are considered, allowing its derivative information is partly known or totally unknown; and 3) a linear-matrix-inequality-based approach is presented to design energy-to-peak state estimators for SNNs with two types of time-varying delays, whose efficiency is demonstrated via two widely studied numerical examples.
Chengda Lu, Xian‐Ming Zhang, Min Wu, Qinglong Qinglong Han, Yong He (2018). Energy-to-Peak State Estimation for Static Neural Networks With Interval Time-Varying Delays. IEEE Transactions on Cybernetics, 48(10), pp. 2823-2835, DOI: 10.1109/tcyb.2018.2836977.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Cybernetics
DOI
10.1109/tcyb.2018.2836977
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access