Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. EMISSIONS OF NITROUS OXIDE FROM ARABLE SOILS: EFFECTS OF TILLAGE REDUCED N INPUT AND CLIMATE CHANGE

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Article
en
2010

EMISSIONS OF NITROUS OXIDE FROM ARABLE SOILS: EFFECTS OF TILLAGE REDUCED N INPUT AND CLIMATE CHANGE

0 Datasets

0 Files

en
2010
Vol 25 (2)
Vol. 25
DOI: 10.7161/anajas.2010.25.2.94-101dergipark.gov.tr/omuanajas/issue/20236/21…

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Pete Smith
Pete Smith

University of Aberdeen

Verified
Mohamed Abdalla
Michael B. Jones
Per Ambus
+3 more

Abstract

Nitrous oxide (N2O) flux measurements from an Irish spring barley field managed under conventional and reduced tillage and different N fertilizer rates at the Teagasc Oak Park Research Centre were made for two consecutive seasons. The aims were to investigate the efficacy of reduced tillage, reduced N fertilizer and climate change on N2O fluxes and emission factors and to study the relationship between crop yield and N-induced fluxes of N2O. The soil is a sandy loam with a pH of 7.4 and organic carbon and nitrogen content at 15 cm of 19 and 1.9 g kg-1 dry soil, respectively. Three climate scenarios, a baseline of measured climatic data from a nearby weather station and a high and low temperature sensitive scenarios predicted by the Hadley Global Climate Model were investigated. The Field-DeNitrification DeComposition (DNDC) was tested against measured nitrous oxide flux from the field, and then used to estimate future fluxes. Reduced tillage had no significant effect on N2O fluxes from soils or crop grain yield. Soil moisture and soil nitrate are the main significant factors affecting N2O flux. The derived emission factor was 0.6% of the applied N fertilizer. By reducing the applied nitrogen fertilizer by 50 % compared to the normal field rate, N2O emissions could be reduced by 57% with no significant decrease on grain yield or quality. DNDC was found suitable to estimate N2O fluxes from Irish arable soils however, underestimated the flux by 24%. Under climate change, using the high temperature increase scenario, DNDC predicted an increase in N2O emissions from both conventional and reduced tillage, ranging from 58 to 88% depending upon N application rate. In contrast annual fluxes of N2O either decreased or increased slightly in the low temperature increase scenario relative to N application (-26 to +16%). Outputs from the model indicate that elevated temperature and precipitation increase N mineralisation and total denitrification leading to greater fluxes of N2O. Annual uncertainties due to the use of two different future climate scenarios were significantly high, ranging from 74 to 95% and from 71 to 90% for the conventional and reduced tillage respectively.

How to cite this publication

Mohamed Abdalla, Michael B. Jones, Per Ambus, M. Wattenbach, Pete Smith, Mike Williams (2010). EMISSIONS OF NITROUS OXIDE FROM ARABLE SOILS: EFFECTS OF TILLAGE REDUCED N INPUT AND CLIMATE CHANGE. , 25(2), DOI: https://doi.org/10.7161/anajas.2010.25.2.94-101.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2010

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.7161/anajas.2010.25.2.94-101

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access