Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions

0 Datasets

0 Files

English
2021
Applied Soft Computing
Vol 110
DOI: 10.1016/j.asoc.2021.107595

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Abidhan Bardhan
Pijush Samui
Kuntal Ghosh
+2 more

Abstract

This study proposes novel integration of extreme learning machine (ELM) and adaptive neuro swarm intelligence (ANSI) techniques for the determination of California bearing ratio (CBR) of soils for the subgrade layers of railway tracks, a critical real-time problem of geotechnical engineering. Particle swarm optimization (PSO) with adaptive and time-varying acceleration coefficients (TAC) was employed to optimize the learning parameters of ELM. Three novel ELM-based ANSI models, namely ELM coupled-modified PSO (ELM-MPSO), ELM coupled-TAC PSO (ELM-TPSO), and ELM coupled-improved PSO (ELM-IPSO) were developed for predicting the CBR of soils in soaked conditions. Compared to standard PSO (SPSO), the modified and improved version of PSO are capable of converging to a high-quality solution at early iterations. A detailed comparison was made between the proposed models and other conventional soft computing techniques, such as conventional ELM, artificial neural network, genetic programming, support vector machine, group method of data handling, and three ELM-based swarm intelligence optimized models (ELM-based grey wolf optimization, ELM-based slime mould algorithm, and ELM-based Harris hawks optimization). Experimental results reveal that the proposed ELM-based ANSI models can attain the most accurate prediction and confirm the dominance of MPSO over SPSO. Considering the consequences and robustness of the proposed models, it can be concluded that the newly constructed ELM-based ANSI models, especially ELM-MPSO, can solve the difficulties in tuning the acceleration coefficients of SPSO by the trial-and-error method for predicting the CBR of soils and be further applied to other real-time problems of geotechnical engineering.

How to cite this publication

Abidhan Bardhan, Pijush Samui, Kuntal Ghosh, Amir Gandomi, Siddhartha Bhattacharyya (2021). ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions. Applied Soft Computing, 110, pp. 107595-107595, DOI: 10.1016/j.asoc.2021.107595.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Applied Soft Computing

DOI

10.1016/j.asoc.2021.107595

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access