0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe electrostatic properties of nanowire field effect transistors with triangular cross sections were investigated. The Poisson equation was solved for these structures; furthermore, two properties of the nanowire field effect transistors, the gate capacitance and current versus gate voltage, were calculated. The simulation results yielded the type, mobility, and concentration of the carriers, as well as the Ohmic contact resistance of the wire transistor. We examined how wire capacitance depends on various parameters: wire diameter, gate oxide thickness, charge density, and shape. It is shown that the capacitance of a triangular nanowire is less than that of a cylindrical nanowire of the same size, which could be significant in structures with thin gate oxides. The simulation results were compared with the previously reported experimental data on GaN nanowires.
Daryoosh Vashaee, Ali Shakouri, Joshua E. Goldberger, Tevye Kuykendall, Peter J. Pauzauskie, Peidong Yang (2006). Electrostatics of nanowire transistors with triangular cross sections. , 99(5), DOI: https://doi.org/10.1063/1.2168229.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2006
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1063/1.2168229
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration