Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Electrocatalytic Properties of Pt Nanowires Supported on Pt and W Gauzes

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2008

Electrocatalytic Properties of Pt Nanowires Supported on Pt and W Gauzes

0 Datasets

0 Files

en
2008
Vol 2 (10)
Vol. 2
DOI: 10.1021/nn800458p

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Eric P. Lee
Zhenmeng Peng
Wei Chen
+3 more

Abstract

This paper describes the preparation of Pt- or W-supported Pt nanowires by directly growing them on the surface of Pt or W gauze. The growth direction of the nanowires was determined to be along the <111> axis. Electrochemical measurements were performed to investigate their catalytic performance toward methanol oxidation. It was found from cyclic voltammetry that the Pt nanowires supported on Pt gauze had the largest electrochemically active surface area with the greatest activity toward methanol oxidation reaction. They also exhibited a slightly slower current decay over time, indicating a higher tolerance to CO-like intermediates. Furthermore, electrochemical impedance spectroscopy measurements showed that the catalytic performance of the supported Pt nanowires prepared with a H(2)PtCl(6) precursor concentration of 40 mM is significantly better for methanol oxidation than the samples prepared at a concentration of 80 mM. This was due partially to the incomplete removal of poly(vinyl pyrrolidone) (PVP) from the more concentrated sample. In contrast, the Pt nanowires supported on W gauze performed the worst.

How to cite this publication

Eric P. Lee, Zhenmeng Peng, Wei Chen, Shaowei Chen, Hong Yang, Younan Xia (2008). Electrocatalytic Properties of Pt Nanowires Supported on Pt and W Gauzes. , 2(10), DOI: https://doi.org/10.1021/nn800458p.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2008

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/nn800458p

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access