0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe low-loading of precious platinum (Pt) metal electrocatalysts development by alloying with less expensive of earth-abundant transition metals exhibiting high electrocatalytic activity and durability performance towards methanol oxidation reaction (MOR) for new generation sustainability of direct methanol fuel cell (DMFC) application has aroused increasing consideration. In this typical study, the as-prepared ternary nanocomposite electrocatalysts with controllable composition of the bimetallic Pt-Pd alloy nanoparticles (NPs) in acidic media were synthesized through a facile one-step hydrothermal-assisted formic acid reduction reaction. The main study on the critical impact of the bimetallic Ptx-Pdy alloy atomic ratio (x-y = 1:1, 2:3, 3:7, 1:4, 1:9) in the as-prepared ternary RGO/bimetallic Ptx-Pdy alloy/0.90CeO2 nanocomposite electrocatalyst upon its suitability as anode electrocatalyst towards the electrocatalytic performance of MOR was thoroughly evaluated at constant operating conditions. The results clearly demonstrated that the compositions of the bimetallic Pt-Pd alloy NPs can be easily adjusted by varying the Ptx-Pdy alloy atomic ratio that can contribute to the significant impact on the electrocatalytic activity of MOR in DMFC. Upon increase in the composition of Pd from the bimetallic Pt-Pd alloy atomic ratio of 1:1 to 2:3 led to increased electrocatalytic activity, long-term stability, durability cycles and charge transfer resistance with respect to the MOR. However, it was continuously decrease with further increase of the Pd proportion in the Pt-Pd alloy NPs atomic ratio of 3:7 to 1:9. The maximum peak current density of the MOR (39.83 mA cm- 2) was obtained in the present research work for the as-synthesized ternary nanocomposite electrocatalyst with the bimetallic Pt-Pd alloy atomic ratio of 2:3. The as-synthesized ternary nanocomposite electrocatalyst with low noble Pt content through the alloying strategy could promotes practically employed as anode electrocatalyst under acidic media in DMFC application.
Mohamad Fahrul Radzi Hanifah, Juhana Jaafar, Mohd Hafiz Dzarfan Othman, Ahmad Fauzi Ismail, Mukhlis A. Rahman, Norhaniza Yusof, Farhana Aziz, Wan Norharyati Wan Salleh, Hamid Ilbeygi (2021). Electrocatalytic performance impact of various bimetallic Pt-Pd alloy atomic ratio in robust ternary nanocomposite electrocatalyst toward boosting of methanol electrooxidation reaction. Electrochimica Acta, 403, pp. 139608-139608, DOI: 10.1016/j.electacta.2021.139608.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Electrochimica Acta
DOI
10.1016/j.electacta.2021.139608
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access