0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAminations of aryl halides catalyzed by copper complexes with ancillary ligands have become valuable for the formation of anilines, and the mechanisms for these reactions have been shown to occur by a Cu(I)/(III) cycle. We show that the coupling of aryl and heteroaryl bromides with a range of nitrogen nucleophiles, including hydrazine hydrate and complex amines, occurs with copper and a simple dianionic, dimethylpyrrole-based oxalohydrazido ligand by a cycle in which Cu(II) complexes of this ligand are the resting state and an active, low-valent, catalytic intermediate. These couplings involving Cu(II) occur in many cases with just 0.1-0.2 mol % catalyst and take place under air, due to the absence of Cu(I) that is less stable to disproportionation and to air. Kinetic profiles and EPR spectroscopy of reactions initiated with Cu(I) and Cu(II) precursors provide strong evidence that both systems react through an active Cu(II) complex, thereby indicating that a recently uncovered mechanistic manifold for copper-catalyzed couplings of phenoxides with oxalamide ligands is also followed for the coupling of nitrogen nucleophiles catalyzed by copper complexes of oxalohydrazido ligands.
Christina N. Pierson, Teresa Horak, Willi M. Amberg, Ritwika Ray, Guodong Rao, Timothy M. Pinkhassik, Serena Fantasia, Stephan M. Rummelt, Kurt Püntener, R. David Britt, John F Hartwig (2025). Efficient Aminations of Aryl Halides by a Cu(II) Catalyst. , 147(24), DOI: https://doi.org/10.1021/jacs.5c05210.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/jacs.5c05210
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access