0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn the last three decades there has been a major shift in China's agriculture with the conversion from cereal fields to vegetable production, however little is known about the impact of this land use change on labile soil carbon and microbial community structure. We conducted a study to characterize dissolved organic carbon (DOC) and soil microbial community by comparing greenhouse vegetable fields with contrasting management intensity and adjacent cereal fields (wheat–maize rotation) in Shouguang and Quzhou in North China. Compared with cereal fields, greenhouse vegetable cultivation increased soil organic carbon (SOC) and total nitrogen (TN), while it decreased the soil pH, particularly at the high-intensity site. The DOC concentration was significantly higher in greenhouse vegetable fields than in cereal fields, whereas DOC composition differed between greenhouse vegetable fields and cereal fields only at high management intensity. Chemical fractionation indicated that DOC from greenhouse vegetable fields with high management intensity was less decomposed than DOC from cereal fields, because the percentage of hydrophobic acid (HOA) as DOC was higher in vegetable fields. Vegetable production significantly changed the microbial community structure in comparison to cereal fields: high-intensity management increased total bacteria, G (+) bacteria and fungi, while low-intensity decreased fungi and increased bacteria-to-fungi ratio. The main factor affecting microbial community structure was soil pH in this study, accounting for 24% of the differences.
Jing Tian, Mingsheng Fan, Jingheng Guo, Petra Marschner, Xiaolin Li, Yakov Kuzyakov (2012). Effects of land use intensity on dissolved organic carbon properties and microbial community structure. European Journal of Soil Biology, 52, pp. 67-72, DOI: 10.1016/j.ejsobi.2012.07.002.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
European Journal of Soil Biology
DOI
10.1016/j.ejsobi.2012.07.002
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access