0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper describes the interaction between ubiquitin (UBI) and three sodium n-alkyl sulfates (SC(n)S) that have the same charge (Z = -1) but different hydrophobicity (n = 10, 12, or 14). Increasing the hydrophobicity of the n-alkyl sulfate resulted in (i) an increase in the number of distinct intermediates (that is, complexes of UBI and surfactant) that form along the pathway of unfolding, (ii) a decrease in the minimum concentrations of surfactant at which intermediates begin to form (i.e., a more negative ΔG(binding) of surfactant for UBI), and (iii) an increase in the number of surfactant molecules bound to UBI in each intermediate or complex. These results demonstrate that small changes in the hydrophobicity of a surfactant can significantly alter the binding interactions with a folded or unfolded cytosolic protein.
Bryan F. Shaw, Grégory F. Schneider, George M M Whitesides (2012). Effect of Surfactant Hydrophobicity on the Pathway for Unfolding of Ubiquitin. , 134(45), DOI: https://doi.org/10.1021/ja3079863.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/ja3079863
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access