0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessProtein adsorption on the surface of implant materials greatly affects the performance of the implants, such as their stability as well as the release of metal ions from and the adhesion of cells to their surface. In addition, the production of extracellular H2O2 from the activation of inflammatory cells could interfere with protein–metal interactions and/or modify the conformation of adsorbed proteins. In this study, we utilised scanning Kelvin probe force microscopy (SKPFM) to visualise the impact of H2O2 on bovine serum albumin (BSA) adsorption on the positively polarised Ti6Al4V alloy in a phosphate-buffered saline (PBS) solution. We show that the negatively charged BSA adsorbs onto the surface of polished and anodically polarised Ti6Al4V in a dense layer with a continuous network-like morphology or cluster shape and reduces the variation in the total surface potential compared to that of blank Ti6Al4V. However, addition of H2O2 to the PBS solution interferes with the formation of the dense protein network, and only a thin and discontinuous protein layer adsorbs onto the surface of the Ti6Al4V alloy, lowering the total surface potential difference. The information presented in this work provides new insights into the adsorption distribution of proteins on metallic substrates in biomaterials field.
Ehsan Rahimi, Ruben Offoiach, Saman Hosseinpour, Ali Davoodi, Kitty Baert, Alexander Lutz, Herman Terryn, Maria Lekka, L. Fedrizzi (2021). Effect of hydrogen peroxide on bovine serum albumin adsorption on Ti6Al4V alloy: A scanning Kelvin probe force microscopy study. Applied Surface Science, 563, pp. 150364-150364, DOI: 10.1016/j.apsusc.2021.150364.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Applied Surface Science
DOI
10.1016/j.apsusc.2021.150364
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access