0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA large proportion of the workforce in the brick kilns of the Brick Belt of Asia are modern-day slaves. Work to liberate slaves and contribute to UN Sustainable Development Goal 8.7 would benefit from maps showing the location of brick kilns. Previous work has shown that brick kilns can be accurately identified and located visually from fine spatial resolution remote-sensing images. Furthermore, via crowdsourcing, it would be possible to map very large areas. However, concerns over the ability to maintain a motivated crowd to allow accurate mapping over time together with the development of advanced machine learning methods suggest considerable potential for rapid, accurate and repeatable automated mapping of brick kilns. This potential is explored here using fine spatial resolution images of a region of Rajasthan, India. A contemporary deep-learning classifier founded on region-based convolution neural networks (R-CNN), the Faster R-CNN, was trained to classify brick kilns. This approach mapped all of the brick kilns within the study area correctly, with a producer’s accuracy of 100%, but at the cost of substantial over-estimation of kiln numbers. Applying a second classifier to the outputs substantially reduced the over-estimation. This second classifier could be visual classification, which, as it focused on a relatively small number of sites, should be feasible to acquire, or an additional automated classifier. The result of applying a CNN classifier to the outputs of the original classification was a map with an overall accuracy of 94.94% with both low omission and commission error that should help direct anti-slavery activity on the ground. These results indicate that contemporary Earth observation resources and machine learning methods may be successfully applied to help address slavery from space.
Giles Foody, Feng Ling, Doreen S. Boyd, Xiaodong Li, Joanna M. Wardlaw (2019). Earth Observation and Machine Learning to Meet Sustainable Development Goal 8.7: Mapping Sites Associated with Slavery from Space. Remote Sensing, 11(3), pp. 266-266, DOI: 10.3390/rs11030266.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Remote Sensing
DOI
10.3390/rs11030266
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access