0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper proposes a new type of memristor with two distinct stable pinched hysteresis loops and twin symmetrical local activity domains, named as a bistable bi-local active memristor. A detailed and comprehensive analysis of the memristor and its associated oscillator system is carried out to verify its dynamic behaviors based on nonlinear circuit theory and Hopf bifurcation theory. The local-activity domains and the edge-of-chaos domains of the memristor, which are both symmetric with respect to the origin, are confirmed by utilizing the mathematical cogent theory. Finally, the subcritical Hopf bifurcation phenomenon is identified in the subcritical Hopf bifurcation region of the memristor.
Hui Chang, Zhen Wang, Yuxia Li, Guanrong Chen (2018). Dynamic Analysis of a Bistable Bi-Local Active Memristor and Its Associated Oscillator System. International Journal of Bifurcation and Chaos, 28(08), pp. 1850105-1850105, DOI: 10.1142/s0218127418501055.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
International Journal of Bifurcation and Chaos
DOI
10.1142/s0218127418501055
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access