0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA (nano)crystal-clear view: With doped semiconductor nanocrystals, local chemical events can be probed through their perturbation of the carrier density of the nanocrystal. Examples demonstrate that redox processes and ligand chemistry can induce changes in the vacancy density within copper(I) sulfide nanorods, allowing such events to be detected by strong shifts in localized surface plasmon resonance.
Prashant K. Jain, Karthish Manthiram, Jesse Engel, Sarah White, Jacob A. Faucheaux, Paul Alivisatos (2013). Doped Nanocrystals as Plasmonic Probes of Redox Chemistry. , 52(51), DOI: https://doi.org/10.1002/anie.201303707.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/anie.201303707
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access