0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAssembly of anisotropic nanocrystals into ordered superstructures is an area of intense research interest due to its relevance to bring nanocrystal properties to macroscopic length scales and to impart additional collective properties owing to the superstructure. Numerous routes have been explored to assemble such nanocrystal superstructures ranging from self-directed to external field-directed methods. Most of the approaches require sensitive control of experimental parameters that are largely environmental and require extra processing steps, increasing complexity and limiting reproducibility. Here, we demonstrate a simple approach to assemble colloidal nanorods in situ, wherein dopant incorporation during the particle synthesis results in the formation of preassembled 2D sheets of close-packed ordered arrays of vertically oriented nanorods in solution.
Ajay Singh, Amita Singh, Gary K. Ong, Matthew R. Jones, Dennis Nordlund, Karen Bustillo, Jim Ciston, Paul Alivisatos, Delia J. Milliron (2017). Dopant Mediated Assembly of Cu<sub>2</sub>ZnSnS<sub>4</sub> Nanorods into Atomically Coupled 2D Sheets in Solution. , 17(6), DOI: https://doi.org/10.1021/acs.nanolett.7b00232.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acs.nanolett.7b00232
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access