0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessFunctional polyethylenes possess valuable bulk and surface properties, but the limits of current synthetic methods narrow the range of accessible materials and prevent many envisioned applications. Instead, these materials are often used in composite films that are challenging to recycle. We report a Cu-catalyzed amination of polyethylenes to form mono- and bifunctional materials containing a series of polar groups and substituents. Designed catalysts with hydrophobic moieties enable the amination of linear and branched polyethylenes without chain scission or cross-linking, leading to polyethylenes with otherwise inaccessible combinations of functional groups and architectures. The resulting materials possess tunable bulk and surface properties, including toughness, adhesion to metal, paintability, and water solubility, which could unlock applications for functional polyethylenes and reduce the need for complex composites.
Nicodemo R. Ciccia, Jake X. Shi, Subhajit Pal, Mutian Hua, Katerina G. Malollari, Carlos Lizandara‐Pueyo, Eugen Risto, Martin Ernst, Brett A. Helms, Phillip B. Messersmith, John F Hartwig (2023). Diverse functional polyethylenes by catalytic amination. , 381(6665), DOI: https://doi.org/10.1126/science.adg6093.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1126/science.adg6093
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access