0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this work, the cruise control problem of high-speed trains’ movements is investigated. Both cases of a single high-speed train and multiple high-speed trains are under consideration. Different with most existing studies where the centralized control or the decentralized control methods are adopted based on a single point mass model of the train, in this paper, a distributed control mechanism is proposed by virtue of the graph theory, and the high-speed train’s model is built as a cascade of point masses connected by flexible couplers. For a single high-speed train, the neighboring cars interact through the coupling force with each other, which can be described by a connected topological graph by regarding each car as a node. Besides, the speed information communication among the cars is considered to be described by another directed topological graph. A distributed control strategy is then developed, with which all the cars of a train track a desired speed asymptotically and the neighboring cars keep a safety distance from each other. For the multiple high-speed trains running on a railway line, the in-train force interaction topology and the speed information communication topology of all the trains are more complex than those of a single train. A new cluster consensus technique is developed, by which a distributed control law is designed. Under the control law, the trains can track the desired speeds asymptotically, the headway distance between adjacent trains and the distance between the neighboring cars of a train can be kept in appropriate ranges. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.
Yan Zhao, Tianzhi Wang, Hamid Reza Karimi (2017). Distributed cruise control of high-speed trains. Journal of the Franklin Institute, 354(14), pp. 6044-6061, DOI: 10.1016/j.jfranklin.2017.07.004.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Journal of the Franklin Institute
DOI
10.1016/j.jfranklin.2017.07.004
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access