Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Discovery of a druggable copper-signaling pathway that drives cell plasticity and inflammation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2022

Discovery of a druggable copper-signaling pathway that drives cell plasticity and inflammation

0 Datasets

0 Files

en
2022
DOI: 10.1101/2022.03.29.486253

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guido Guido Kroemer
Guido Guido Kroemer

Institution not specified

Verified
Stéphanie Solier
Sebastian Müller
Tatiana Cañeque
+22 more

Abstract

Inflammation is a complex physiological process triggered in response to harmful stimuli. It involves specialized cells of the immune system able to clear sources of cell injury and damaged tissues to promote repair. Excessive inflammation can occur as a result of infections and is a hallmark of several diseases. The molecular basis underlying inflammatory responses are not fully understood. Here, we show that the cell surface marker CD44, which characterizes activated immune cells, acts as a metal transporter that promotes copper uptake. We identified a chemically reactive pool of copper(II) in mitochondria of inflammatory macrophages that catalyzes NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD + enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with a rationally-designed dimer of metformin triggers distinct metabolic and epigenetic states that oppose macrophage activation. This drug reduces inflammation in mouse models of bacterial and viral (SARS-CoV-2) infections, improves well-being and increases survival. Identifying mechanisms that regulate the plasticity of immune cells provides the means to develop next-generation medicine. Our work illuminates the central role of copper as a regulator of cell plasticity and unveils a new therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.

How to cite this publication

Stéphanie Solier, Sebastian Müller, Tatiana Cañeque, Antoine Versini, Leeroy Baron, Pierre Gestraud, Nicolas Servant, Laila Emam, Arnaud Mansart, G. Dan Pantoş, Vincent Gandon, Valentin Sencio, Cyril Robil, François Trottein, Anne-Laure Bègue, Hélène Salmon, Sylvère Durand, Ting‐Di Wu, Nicolas Manel, Alain Puisieux, Mark A. Dawson, Sarah Watson, Guido Guido Kroemer, Djillali Annane, Raphaël Rodriguez (2022). Discovery of a druggable copper-signaling pathway that drives cell plasticity and inflammation. , DOI: https://doi.org/10.1101/2022.03.29.486253.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2022

Authors

25

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1101/2022.03.29.486253

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access